Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.216
Filtrar
1.
J Agric Food Chem ; 72(9): 4788-4800, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377546

RESUMO

The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 µg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.


Assuntos
Citrus , Dactinomicina/análogos & derivados , Xanthomonas , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/toxicidade , Antibacterianos/metabolismo , Citrus/metabolismo , Doenças das Plantas/microbiologia
2.
J Plant Physiol ; 294: 154195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377939

RESUMO

We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.


Assuntos
Fumarato Hidratase , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Fumarato Hidratase/genética , Ácidos Tricarboxílicos/metabolismo , Ciclo do Ácido Cítrico , Plantas/genética , Plantas/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Metilação de DNA/genética , Respiração
3.
New Phytol ; 241(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872738

RESUMO

C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.


Assuntos
Carbono , NADH Desidrogenase , Carbono/metabolismo , NADH Desidrogenase/metabolismo , Zea mays/genética , Zea mays/metabolismo , Malatos/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Proteômica , Fotossíntese , Oxirredução , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068872

RESUMO

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Assuntos
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploide , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Ipomoea/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Photosynth Res ; 158(1): 57-76, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561272

RESUMO

The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.


Assuntos
Arabidopsis , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos/metabolismo , Peróxido de Hidrogênio/metabolismo , NADP/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Fotossíntese , Estresse Salino , Aminoácidos/metabolismo
6.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373359

RESUMO

The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression upon irradiation by red light, which was abolished by far-red light. This was accompanied by an increase in promoter methylation of the gene Sdh1-2 encoding the flavoprotein subunit A, while methylation was low for Sdh2-3 encoding the iron-sulfur subunit B under all conditions. The expression of Sdh3-1 and Sdh4 encoding the anchoring subunits C and D was not affected by red light. The expression of Fum1 encoding the mitochondrial form of fumarase was regulated by red and far-red light via methylation of its promoter. Only one gene encoding the mitochondrial NAD-malate dehydrogenase gene (mMdh1) was regulated by red and far-red light, while the second gene (mMdh2) did not respond to irradiation, and neither gene was controlled by promoter methylation. It is concluded that the dicarboxylic branch of the tricarboxylic acid cycle is regulated by light via the phytochrome mechanism, and promoter methylation is involved with the flavoprotein subunit of succinate dehydrogenase and the mitochondrial fumarase.


Assuntos
Fumarato Hidratase , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fumarato Hidratase/genética , Metilação , Zea mays/genética , Zea mays/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
7.
Plant Physiol Biochem ; 201: 107814, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321041

RESUMO

Malate dehydrogenase (MDH) as an essential metabolic enzyme is widely involved in plant developmental processes. However, the direct relationship between its structural basis and in vivo roles especially in plant immunity remains elusive. In this study, we found that cytoplasmic cassava (Manihot esculenta, Me) MDH1 was essential for plant disease resistance against cassava bacterial blight (CBB). Further investigation revealed that MeMDH1 positively modulated cassava disease resistance, accompanying the regulation of salicylic acid (SA) accumulation and pathogensis-related protein 1 (MePR1) expression. Notably, the metabolic product of MeMDH1 (malate) also improved disease resistance in cassava, and its application rescued the disease susceptibility and decreased immune responses of MeMDH1-silenced plants, indicating that malate was responsible for MeMDH1-mediated disease resistance. Interestingly, MeMDH1 relied on Cys330 residues to form homodimer, which was directly related with MeMDH1 enzyme activity and the corresponding malate biosynthesis. The crucial role of Cys330 residue in MeMDH1 was further confirmed by in vivo functional comparison between overexpression of MeMDH1 and MeMDH1C330A in cassava disease resistance. Taken together, this study highlights that MeMDH1 confers improved plant disease resistance through protein self-association to promote malate biosynthesis, extending the knowledge of the relationship between its structure and cassava disease resistance.


Assuntos
Manihot , Manihot/metabolismo , Resistência à Doença/fisiologia , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Doenças das Plantas/microbiologia , Verduras
8.
Biomed Khim ; 69(2): 104-111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37132492

RESUMO

The development of experimental alloxan diabetes in rats was accompanied by the increase the activity of liver NAD⁺- and NADP⁺-dependent malic enzymes (ME; NAD⁺-ME, EC 1.1.1.39 and NADP⁺-ME, 1.1.1.40) associated with an increase in the rate of transcription of genes encoding these enzymes. Oral administration of aqueous extracts of Jerusalem artichoke and olive to diabetic rats caused a noticeable decrease in blood glucose, a decrease in the rate of transcription of the studied genes; and a decrease in ME activity towards normal values. Thus, extracts of Jerusalem artichoke and olive can be used as additives to the standard therapy of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Helianthus , Ratos , Animais , NAD , NADP , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado , Malato Desidrogenase/genética
9.
Proc Natl Acad Sci U S A ; 120(23): e2217869120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253016

RESUMO

T cell lymphomas (TCLs) are a group of rare and heterogeneous tumors. Although proto-oncogene MYC has an important role in driving T cell lymphomagenesis, whether MYC carries out this function remains poorly understood. Here, we show that malic enzyme 2 (ME2), one of the NADPH-producing enzymes associated with glutamine metabolism, is essential for MYC-driven T cell lymphomagenesis. We establish a CD4-Cre; Myc flox/+transgenic mouse mode, and approximately 90% of these mice develop TCL. Interestingly, knockout of Me2 in Myc transgenic mice almost completely suppresses T cell lymphomagenesis. Mechanistically, by transcriptionally up-regulating ME2, MYC maintains redox homeostasis, thereby increasing its tumorigenicity. Reciprocally, ME2 promotes MYC translation by stimulating mTORC1 activity through adjusting glutamine metabolism. Treatment with rapamycin, an inhibitor of mTORC1, blocks the development of TCL both in vitro and in vivo. Therefore, our findings identify an important role for ME2 in MYC-driven T cell lymphomagenesis and reveal that MYC-ME2 circuit may be an effective target for TCL therapy.


Assuntos
Glutamina , Malato Desidrogenase , Linfócitos T , Animais , Camundongos , Glutamina/metabolismo , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfócitos T/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo
10.
Microbiol Spectr ; 11(3): e0016823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036365

RESUMO

The emergence of drug-resistant variants of malaria-causing Plasmodium parasites is a life-threatening problem worldwide. Investigation of the physiological function of individual parasite proteins is a prerequisite for a deeper understanding of the metabolic pathways required for parasite survival and therefore a requirement for the development of novel antimalarials. A Plasmodium membrane protein, malate-quinone oxidoreductase (MQO), is thought to contribute to the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) and is an antimalarial drug target. However, there is little information on its expression and function. Here, we investigated the function of Plasmodium falciparum MQO (PfMQO) in mitochondria using a yeast heterologous expression system. Using a yeast deletion mutant of mitochondrial malate dehydrogenase (MDH1), which is expected to be functionally similar to MQO, as a background strain, we successfully constructed PfMQO-expressing yeast. We confirmed that expression of PfMQO complemented the growth defect of the MDH1 deletion, indicating that PfMQO can adopt the metabolic role of MDH1 in energy transduction for growth in the recombinant yeast. Analysis of cell fractions confirmed that PfMQO was expressed and enriched in yeast mitochondria. By measuring MQO activity, we also confirmed that PfMQO expressed in yeast mitochondria was active. Measurement of oxygen consumption rates showed that mitochondrial respiration was driven by the TCA cycle through PfMQO. In addition, we found that MQO activity was enhanced when intact mitochondria were sonicated, indicating that the malate binding site of PfMQO is located facing the mitochondrial matrix. IMPORTANCE We constructed a model organism to study the physiological role and function of P. falciparum malate-quinone oxidoreductase (PfMQO) in a yeast expression system. PfMQO is actively expressed in yeast mitochondria and functions in place of yeast mitochondrial malate dehydrogenase, which catalyzes the oxidation of malate to oxaloacetate in the TCA cycle. The catalytic site for the oxidation of malate in PfMQO, which is a membrane-bound protein, faces into the mitochondrial matrix, not the mitochondrial inner membrane space. Our findings clearly show that PfMQO is a TCA cycle enzyme and is coupled with the ETC via ubiquinone reduction.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Plasmodium , Animais , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Parasitos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Malatos/metabolismo , Malária Falciparum/parasitologia , Proteínas de Membrana , Quinonas
11.
J Plant Physiol ; 283: 153964, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36917876

RESUMO

In plants, proline accumulation in cells is a common response to alleviate the stress caused by water deficits. It has been shown that foliar proline spraying, as well as its overaccumulation in transgenic plants can increase drought tolerance, as proline metabolism plays important roles in cell redox balance and on energy dissipation pathways. The aim of this work was to evaluate the role of exogenous proline application or its endogenous overproduction as a potential mechanism for energy dissipation. For this, wild-type and VaP5CSF129A transgenic tobacco plants were sprayed with proline (10 mM) and submitted to water deficit. Changes in plant physiology and biochemistry were evaluated. Transcriptional changes in the relative expression of genes involved in proline synthesis and catabolism, NAD (P)-dependent malate dehydrogenase (NAD(P)-MDH), alternative oxidase (AOX), and VaP5CSF129A transgene were measured. Exogenous proline reduced the negative effects of water deficit on photosynthetic activity in both genotypes; with the transgenic plants even less affected. Water deficit caused an increase in the relative expression of proline biosynthesis genes. On the other hand, the expression of catabolism genes decreased, primarily in transgenic plants. Exogenous proline reduced activity of the NADP-MDH enzyme and decreased expression of the AOX and NADP-MDH genes, mainly in transgenic plants under water stress. Finally, our results suggest that proline metabolism could act as a complementary/compensatory mechanism for the energy dissipation pathways in plants under water deficit.


Assuntos
NAD , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , /metabolismo , NAD/metabolismo , NADP/metabolismo , Malato Desidrogenase/genética , Prolina/metabolismo , Secas , Regulação da Expressão Gênica de Plantas
12.
Food Chem ; 400: 134061, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084591

RESUMO

The underlying mechanism of the role of mitochondria in color changing of tilapia fillet during 0-4 d storage is not completely clear. A total of 209 differentially significant expressed proteins (DSEPs) were identified by using label-free mitochondrial proteomics, with 56 proteins up-regulated in T2 and 61 proteins (up-regulated) in T3. Protein-Protein interaction reveled proteins which participate in TCA cycles (Citrate synthase (cs)), Oxidoreductase (Malate dehydrogenase (mdh1, mdh2), Succinyl-CoA (Oxct1), Hydroxyacyl-coenzyme a dehydrogenase (hadh), Dehydrogenase/reductase (SDR family) member 1 (dhrs1)) interacted strongly with each other. In turn, they can increase the level of mitochondrial respiration and mitochondrial function, leading to color changing of tilapia fillet. The heat shock 60kD protein 1 (chaperonin, hspd1) interacted with metabolic enzymes (cs and mdh2) and had important effects on color. These results could help researchers better understand the color changing mechanism on the surface of tilapia fillet during the storage.


Assuntos
Carne Vermelha , Tilápia , Animais , Citrato (si)-Sintase/metabolismo , Coenzima A , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Proteínas Mitocondriais , Proteômica , Carne Vermelha/análise , Tilápia/genética , Tilápia/metabolismo
13.
Protein J ; 42(1): 14-23, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534341

RESUMO

Malate is an important material to various industrials and clinical applications. Bacillus subtilis is a widely used biocatalyst tool for chemical production. However, the specific enzymatic properties of malate dehydrogenase from Bacillus subtilis (BsMDH) remain largely unknown. In the present study, BsMDH was cloned, recombinantly expressed and purified to test its enzymatic properties. The molecular weight of single unit of BsMDH was 34,869.7 Da. Matrix-Assisted Laser-Desorption Ionization-Time-of-Flight Mass Spectrometry and gel filtration analysis indicated that the recombinant BsMDH could form dimers. The kcat/Km values of oxaloacetate and NADH were higher than those of malate and NAD+, respectively, indicating a better catalysis in the direction of malate synthesis than the reverse. Furthermore, six BsMDH mutants were constructed with the substitution of amino acids at the coenzyme binding site. Among them, BsMDH-T7 showed a greatly higher affinity and catalysis efficiency to NADPH than NADH with the degree of alteration of 2039, suggesting the shift of the coenzyme dependence from NADH to NADPH. In addition, BsMDH-T7 showed a relatively lower Km value, but a higher kcat and kcat/Km than NADPH-dependent MDHs from Thermus flavus and Corynebacterium glutamicum. Overall, these results indicated that BsMDH and BsMDH-T7 mutant might be promising enzymes for malate production.


Assuntos
Coenzimas , NAD , Coenzimas/metabolismo , NAD/metabolismo , NADP/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cinética
14.
J Exp Clin Cancer Res ; 41(1): 349, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527092

RESUMO

BACKGROUND: To identify potential targets related to nicotinamide adenine dinucleotide (NAD+) metabolism in gliomas, we used RNA immunoprecipitation to identify a novel long noncoding RNA renamed malate dehydrogenase degradation helper (MDHDH) (NONCODE annotation ID: NONHSAT138800.2, NCBI Reference Sequence: NR_028345), which bound to MDH2 (malate dehydrogenase 2), that is downregulated in glioblastoma multiforme (GBM) and associated with metabolic regulation. However, its underlying mechanisms in the progression of GBM have not been well studied. METHODS: To investigate the clinical significance of MDHDH, we analyzed its expression levels in publicly available datasets and collected clinical samples from Shandong Provincial Hospital, affiliated with Shandong University. Functional assays, including FISH/CISH, CCK8, EdU, wound healing, and transwell assays, were used to determine the cellular/subcellular localization, tissue expression profile and anti-oncogenic role of MDHDH. Furthermore, RNA pulldown, mass spectrometry RNA immunoprecipitation, coimmunoprecipitation, JC-1 probe, and cell energy-production assays were used to determine the mechanisms of MDHDH in the development of GBM. Animal experiments were conducted to determine the antitumorigenic role of MDHDH in GBM in vivo. RESULTS: In public datasets, MDHDH expression was significantly downregulated in GBM and LGG compared with GTEx normal brain tissues. The results of the tissue microarray showed that the MDHDH expression level negatively correlated with the tumor grade. Altered MDHDH expression led to significant changes in the proliferation, migration and invasion of GBM cells both in vitro and in vivo. Mechanistically, we found that MDHDH directly bound to MDH2 and PSMA1 (20S proteasomal core subunit alpha-type 1) as a molecular scaffold and accelerated the degradation of MDH2 by promoting the binding of ubiquitinated MDH2 to the proteasome. The degradation of MDH2 subsequently led to changes in the mitochondrial membrane potential and NAD+/NADH ratio, which impeded glycolysis in glioma cells. CONCLUSIONS: In conclusion, this study broadened our understanding of the functions of lncRNAs in GBM. We demonstrated that the tumor suppressor MDHDH might act as a clinical biomarker and that the overexpression of MDHDH might be a novel synergistic strategy for enhancing metabolism-based, epigenetic-based, and autophagy regulation-based therapies with clinical benefits for glioblastoma multiforme patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , RNA Longo não Codificante , Animais , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NAD/genética , NAD/metabolismo , NAD/uso terapêutico , Neoplasias Encefálicas/patologia , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Glioma/genética , Autofagia/genética
15.
Mol Cell ; 82(23): 4537-4547.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327975

RESUMO

Inhibition of the electron transport chain (ETC) prevents the regeneration of mitochondrial NAD+, resulting in cessation of the oxidative tricarboxylic acid (TCA) cycle and a consequent dependence upon reductive carboxylation for aspartate synthesis. NAD+ regeneration alone in the cytosol can rescue the viability of ETC-deficient cells. Yet, how this occurs and whether transfer of oxidative equivalents to the mitochondrion is required remain unknown. Here, we show that inhibition of the ETC drives reversal of the mitochondrial aspartate transaminase (GOT2) as well as malate and succinate dehydrogenases (MDH2 and SDH) to transfer oxidative NAD+ equivalents into the mitochondrion. This supports the NAD+-dependent activity of the mitochondrial glutamate dehydrogenase (GDH) and thereby enables anaplerosis-the entry of glutamine-derived carbon into the TCA cycle and connected biosynthetic pathways. Thus, under impaired ETC function, the cytosolic redox state is communicated into the mitochondrion and acts as a rheostat to support GDH activity and cell viability.


Assuntos
Malato Desidrogenase , NAD , NAD/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Oxirredução , Ciclo do Ácido Cítrico/fisiologia , Respiração
16.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36208218

RESUMO

Malate dehydrogenase (MDH) catalyzes the reduction of oxaloacetate to L-malate. Geobacillus stearothermophilus MDH (gs-MDH) is used as a diagnostic reagent; however, gs-MDH is robustly inhibited at high substrate concentrations, which limits its reaction rate. Here, we reduced substrate inhibition of gs-MDH by deleting its C-terminal residues. Computational analysis showed that C-terminal residues regulate the position of the active site loop. C-terminal deletions of gs-MDH successfully increased Ki values by 5- to 8-fold with maintained thermal stability (>90% of the wild-type enzyme), although kcat/Km values were decreased by <2-fold. The structure of the mutant showed a shift in the location of the active site loop and a decrease in its volume, suggesting that substrate inhibition was reduced by eliminating the putative substrate binding site causing inhibition. Our results provide an effective method to reduce substrate inhibition of the enzyme without loss of other parameters, including binding and stability constants.


Assuntos
Geobacillus stearothermophilus , Malato Desidrogenase , Malato Desidrogenase/genética , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Sítios de Ligação , Ácido Oxaloacético , Cinética
17.
Comput Math Methods Med ; 2022: 2023500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158123

RESUMO

Background: Acute lung injury (ALI) is a clinical disease with high morbidity and mortality, with limited treatment means. For primary alveolar epithelial type II (AT2) cells, glycolysis is an essential bioenergetic process. However, the significance of AT2 cell glycolysis in sepsis ALI remains unknown. Methods and Results: In the current study, based on microarray analysis, real-time quantitative PCR, and Western blotting, we found that the hsa00020: citrate cycle pathway was inactivated, specifically its downstream gene: malate dehydrogenase 1 (MDH1) and MDH2 in ALI. In this context, lipopolysaccharides (LPS) were used to construct the septic-ALI mouse model and the biological function of MDH1 and MDH2 in primary alveolar epithelial type II (AT2) cells was explored. Through CCK-8, EdU, transwell, and apoptosis assays, we found that MDH1 and MDH2 promoted the cell vitality of AT2 cells, which relied on MDH1 and MDH2 to promote the glucose intake of AT2 cells. Conclusion: Overall, these findings suggest that targeting MDH1/MDH2-mediated AT2 cell glycolysis may be a potential strategy for ALI patients.


Assuntos
Lipopolissacarídeos , Malato Desidrogenase , Animais , Sobrevivência Celular , Citratos , Glucose , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Camundongos , Sincalida
18.
Front Immunol ; 13: 962986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159820

RESUMO

Focal segmental glomerulosclerosis (FSGS) has an over 30% risk of recurrence after kidney transplantation (Ktx) and is associated with an extremely high risk of graft loss. However, mechanisms remain largely unclear. Thus, this study identifies novel genes related to the recurrence of FSGS (rFSGS). Whole genome-wide sequencing and next-generation RNA sequencing were used to identify the candidate mutant genes associated with rFSGS in peripheral blood mononuclear cells (PBMCs) from patients with biopsy-confirmed rFSGS after KTx. To confirm the functional role of the identified gene with the MDH2 c.26C >T mutation, a homozygous MDH2 c.26C >T mutation in HMy2.CIR cell line was induced by CRISPR/Cas9 and co-cultured with podocytes, mesangial cells, or HK2 cells, respectively, to detect the potential pathogenicity of the c.26C >T variant in MDH2. A total of 32 nonsynonymous single nucleotide polymorphisms (SNPs) and 610 differentially expressed genes (DEGs) related to rFSGS were identified. DEGs are mainly enriched in the immune and metabolomic-related pathways. A variant in MDH2, c.26C >T, was found in all patients with rFSGS, which was also accompanied by lower levels of mRNA expression in PBMCs from relapsed patients compared with patients with remission after KTx. Functionally, co-cultures of HMy2.CIR cells overexpressing the mutant MDH2 significantly inhibited the expression of synaptopodin, podocin, and F-actin by podocytes compared with those co-cultured with WT HMy2.CIR cells or podocytes alone. We identified that MDH2 is a novel rFSGS susceptibility gene in patients with recurrence of FSGS after KTx. Mutation of the MDH2 c.26C >T variant may contribute to progressive podocyte injury in rFSGS patients.


Assuntos
Glomerulosclerose Segmentar e Focal , Actinas/genética , Genômica , Glomerulosclerose Segmentar e Focal/genética , Humanos , Leucócitos Mononucleares , Malato Desidrogenase/genética , Mutação , RNA Mensageiro , Recidiva , Transcriptoma
19.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077425

RESUMO

Malate dehydrogenase, which facilitates the reversible conversion of malate to oxaloacetate, is essential for energy balance, plant growth, and cold and salt tolerance. However, the genome-wide study of the MDH family has not yet been carried out in tomato (Solanum lycopersicum L.). In this study, 12 MDH genes were identified from the S. lycopersicum genome and renamed according to their chromosomal location. The tomato MDH genes were split into five groups based on phylogenetic analysis and the genes that clustered together showed similar lengths, and structures, and conserved motifs in the encoded proteins. From the 12 tomato MDH genes on the chromosomes, three pairs of segmental duplication events involving four genes were found. Each pair of genes had a Ka/Ks ratio < 1, indicating that the MDH gene family of tomato was purified during evolution. Gene expression analysis exhibited that tomato MDHs were differentially expressed in different tissues, at various stages of fruit development, and differentially regulated in response to abiotic stresses. Molecular docking of four highly expressed MDHs revealed their substrate and co-factor specificity in the reversible conversion process of malate to oxaloacetate. Further, co-localization of tomato MDH genes with quantitative trait loci (QTL) of salt stress-related phenotypes revealed their broader functions in salt stress tolerance. This study lays the foundation for functional analysis of MDH genes and genetic improvement in tomato.


Assuntos
Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Solanum lycopersicum/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
20.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056899

RESUMO

We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.


Assuntos
Malato Desidrogenase , Malatos , Regulação Alostérica , Aminoácidos/genética , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...